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1 INTRODUCTION

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis complex (MTBC), and is a leading
cause of death worldwide. Genotyping of MTBC is used to identify and distinguish MTBC into distinct lineages
and/or sublineages that are useful for TB tracking and control and examining host-pathogen relationships [1]. The
major lineages of MTBC are M. africanum, M. canettii, M. microti, M. bovis, M. tuberculosis subgroup Indo-Oceanic,
M. tuberculosis subgroup Euro-American, M. tuberculosis subgroup East Asian (Beijing) and M. tuberculosis subgroup
East-African Indian (CAS). While sublineages of MTBC are routinely used in the TB literature, their exact definitions
and names have not been clearly established. The SpolDB4 database contains 39,295 strains and their spoligotypes
are classified into 62 sublineages [2], but many of these are considered to be “potentially phylogeographically-
specific MTBC genotype families”. Therefore, further analysis is needed to confirm these sublineages.

In this study, we develop a tensor clustering framework for sublineage classification of MTBC strains labeled by
major lineages based on multiple biomarkers, spoligotype and MIRU, which are the biomarkers typically collected
for the purpose of TB surveillance. We generate multiple-biomarker tensors of MTBC strains and apply multiway
models for dimensionality reduction. The model accurately captures spoligotype evolutionary dynamics by using
contiguous deletions of spacers. The tensor transforms spoligotypes and MIRU into a new representation where
traditional clustering methods apply (we use modified k-means clustering) without the users having to decide a
priori how to combine spoligotype and MIRU patterns. Strains are clustered based on the transformed data without
using any information from SpolDB4 families. Clustering results lead to the subdivision of major lineages of MTBC
into groups with clear and distinguishable spoligotype and MIRU signatures. Comparison of the clusters with
SpolDB4 families suggests dividing and merging some SpolDB4 families, while strongly validating others.

2 METHODS

Clustering MTBC strains using multiple biomarkers consists of a sequence of steps. First, we generate a tensor with
one mode representing the strains to be clustered, and two other modes representing the two biomarkers. Second,
we apply multiway models on the strain mode of the tensor to get a score matrix of strains. Third, we use this
score matrix to decide similarity between strains, and cluster them using a stable version of k-means. In the final
step, we evaluate the results of clusterings using cluster validity indices to select the best k. This stepwise clustering
framework is outlined in Figure 1.

2.1 Multiple-biomarker tensor

The strain dataset is arranged as a three-way array with strains in the first mode, spoligotype deletions in the
second mode, and MIRU patterns in the third mode. Each entry A(i, j, k) in the array corresponds to the number
of repeats in MIRU pattern £k of strain ¢ with spoligotype deletion j. Thus, strain datasets are formed as strain
x spoligotype deletion x MIRU pattern tensors. Generation of these multiple-biomarker tensors from the biomarker
information of each strain is shown in Figure 2. We represent spoligotype deletions with 5, where s; € {0,1} and
i € {1,..,n} where n is the number of informative spoligotype deletions found using feature selection. We represent
12-loci MIRU with 7, where m; € {1,..,9,> 9} and j € {1,..,12}. Given multiple-biomarker tensor X, the entries
can take the following values according to the genotype of the strain:

X e 0 if strain ¢ lacks spoligotype deletion j,
GETT >0 if strain ¢ has spoligotype deletion j and MIRU loci k has r repeats.
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Fig. 1: Clustering framework of MTBC strains.
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Fig. 2: Biomarker kernel matrix §® m for each strain forms multiple-biomarker tensor. 5 represents spoligotype
deletions and 7 represents MIRU patterns.

Dataset: The dataset comprises of 6848 distinct MTBC strains as determined by spoligotype and 12-loci MIRU,
labeled with major lineages and SpolDB4 families. The strains are mainly from the CDC dataset - a database
collected by the CDC from 2004-2008 labeled with the major lineages [3]. The original SpolDB4 labeled dataset
contains only spoligotypes. We found all occurrences of these spoligotypes in the CDC dataset. In this way we
constructed a database with spoligotype and MIRU patterns, with major lineages as determined by CDC, and
sublineages as given in SpolDB4. In total, the dataset has 571 East Asian (Beijing), 508 East-African Indian (CAS),
4580 Euro-American, 1023 Indo-Oceanic, 64 M. africanum and 102 M. bovis strains. We created 6 datasets from the
CDC+MIRU-VNTRplus dataset, one for each major lineage, and divided them into sublineages.

2.2 Multiway modeling

We used PARAFAC and Tucker3 techniques to model the three-way biomarker tensor. We determined the number
of components for each model to ensure a bound on the explained variance of data.

2.2.1 Multiway models

We used PARAFAC and Tucker3 models to explain the tensor with high accuracy. Multiway modeling of multiple-
biomarker tensors was carried out using the n-way Toolbox of MATLAB by Andersson et al. [4].

PARAFAC: PARAFAC is a generalization of SVD to multiway data [5]. A 3-way array X € R/*7*X js modeled
by an R-component PARAFAC model as follows:

R
Xk = ZgrrrAiTBjTCkT + By, 1
r=1
where A € RI*E, B € R/*E, C € REX! are component matrices of first, second and third mode respectively.
G € RFXRXE g the core array and E € R’*7*X g the residual term containing all unexplained variation.
Tucker3: Tucker3 is an extension of bilinear factor analysis to multiway datasets [6]. A 3-way array X € RI*/*xK
is modeled by a (P, @), R)-component Tucker3 model as follows:

P Q R

Xijk = Z Z ngqTAiPquCkT + Eijk (2

p=1g=1r=1

where A € RI*P, B € R7*?, C € RE*® are component matrices of first, second and third mode. G € RP*X@*E jg
the core array and E € R’*/*X is the residual term.



Major Lineage PARAFAC Tucker3
# Components | Core Consistency | # Components | Variance

M. africanum 3 94.79 [4 4 3] 95.66
M. bovis 2 100.00 [7 6 4] 95.05
East Asian (Beijing) 2 100.00 [3 4 2] 93.09
East-African Indian (CAS) 2 100.00 [11 10 4] 97.23
Indo-Oceanic 4 94.32 [15 13 5] 95.55
Euro-American 14 99.03 [14 13 5] 89.77

TABLE 1: Number of components used in PARAFAC and Tucker3 model to fit the tensors for the datasets to be
clustered. We used core consistency diagnostic to validate PARAFAC models and percentage of explained variance
to validate Tucker3 models.

2.2.2 Model validation

A multiway model is appropriate if adding more components to any mode does not improve the fit considerably.
We used the core consistency diagnostic (CORCONDIA) to determine the number of components of the PARAFAC
model. As a rule of thumb, Bro et al. suggest that a core consistency above 90% implies an appropriate model [7].
In order to determine the number of components of the Tucker3 model, we started by fitting a Tucker3 model to
the tensor with the same number of components. We picked the number of components that explains the variance
of the data with close to 100% accuracy. Then we decreased the number of components until the most important
factor combinations are found that explain over 90% of the variance of the data. Validated number of components
along with core consistency values for PARAFAC models and explained variance for Tucker3 models are included
in Table 1.

2.3 Clustering algorithm

We developed the kmeans_mtimes_seeded algorithm, a modified version of the k-means algorithm, to group
MTBC strains based on the score matrices of the multiway models. We solved weaknesses of k-means with two
improvements: 1) Initial centroids are chosen by careful seeding, using a heuristic called kmeans++, suggested
by Arthur et al. [8]. Let D(z) represent the shortest Euclidean distance from data point x to the closest center
already chosen. kmeans++ chooses a new centroid at each step such that the new centroid is furthest from all
chosen centroids. 2) The local minima problem is partially solved by repeating the k-means algorithm multiple
times and getting the run with minimum objective value. The kmeans_mtimes_seeded algorithm is more stable
than the k-means algorithm, and produces more accurate results. Details of kmeans_mtimes_seeded algorithm
are included in [9].

2.4 Cluster Validation

Clustering results for the MTBC strains are evaluated to determine the best k& and compare it with existing
sublineages using cluster validity indices. We used best-match stability for stability analysis of the clustering
algorithm [10]. We used DD-weighted gap statistic and F-measure for cluster validation [11].

’ Major Lineage H # SpolDB4 families ‘ # Tensor sublineages ‘ F-measure ‘ Average best-match stability ‘
M. africanum 4 4 0.66 1
M. bovis 5 3 0.71 1
East Asian (Beijing) 2 5 0.87 1
East-African Indian (CAS) 4 3 0.82 1
Indo-Oceanic 13 11 0.57 0.90
Euro-American 33 33 0.61 0.85

TABLE 2: Number of SpolDB4 families and number of tensor sublineages for each major lineage. F-measure and
best-match stability values assess the agreement of the sublineages to the SpolDB4 families and the certainty of
tensor sublineages respectively.

3 RESULTS

We subdivide each of the major lineages of MTBC into sublineages using multiple-biomarker tensors. Overall results
for six major lineages are shown in Table 2. The F-measure values range from 57% to 87% indicating that the
sublineages found by the tensor only partially overlap with those of SpolDB4. The four sublineages of M. africanum



strains found by tensor sublineages are quite distinct as shown the clear separation of the four sublineages in the
PCA plot and biomarker signature in Figure 3. The tensor sublineages for all major lineages can be found in full
length technical report [9].
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Fig. 3: PCA plot of clustering, spoligotype signatures and MIRU signatures of tensor sublineages of M. africanum
strain dataset.

4 CONCLUSION

We developed a clustering framework which groups MTBC strains based on their spoligotype and MIRU informa-
tion via multiple-biomarker tensors. Simultaneous analysis of spoligotype and MIRU through multiple-biomarker
tensors and clustering of MTBC strains lead to coherent sublineages of major lineages with clear and distinctive
spoligotype and MIRU signatures. The clustering framework used in this study can be further extended to find
subgroups of MTBC strains based on other biomarkers such as RFLP and SNPs. We can extend multiple-biomarker
tensors and add a new mode for each biomarker added to the genotype representation of strains, e.g. RFLP.
This would be a major advancement because there is no way to define a similarity measure between RFLPs of
strains other than determining whether or not the patterns match exactly. Future work will involve using various
biomarkers to group MTBC strains. Multiple-biomarker tensors with spoligotype, MIRU patterns, and RFLP in
modes may lead to a clustering of MTBC strains which is comparable with lineages identified on the basis of SNPs.
Since many subfamilies are clearly known and more biomarkers are being developed, the multiple-biomarker tensor
can be used in supervised classification to build reliable classifiers of MTBC sublineages and can be used to enhance
TB control, epidemiology and research.
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